The proposed design allows for a net power increase of 68% from 73 MW\textsubscript{e} to 123 MW\textsubscript{e}.

The use of a shell and tube heat exchanger and a Split Recuperation Brayton Cycle will condense the steam in the intermediary loop and significantly increase the thermal efficiency of the system.

Alloy 800H was chosen for the SCO\textsubscript{2}-side of the primary heat exchanger due to its strength and corrosion resistance, and steel for the shell side of the heat exchanger.